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Abstract

We have developed a particle-level, dynamic simulation technique to probe the structural behavior of
non-Brownian fiber suspensions in simple shear flow. The model incorporates a variety of realistic features
including fiber flexibility, irregular equilibrium fiber shapes, and fiber interactions. Simulated suspensions
exhibit heterogeneous structures, or flocculation, when the model fibers are flexible, have deformed equi-
librium shapes, and interact through static friction forces, even in the absence of attractive forces between
fibers. The addition of kinetic friction and weak attractive forces has little effect on flocculation behavior,
while anisotropic fiber bending tends to shift the onset of flocculation to larger coefficients of friction.
© 2003 Published by Elsevier Ltd.
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1. Introduction

Suspensions of non-Brownian fibers are found in a variety of applications, such as pulp and
paper and fiber-filled composites processing. The physical characteristics of the suspensions, as
well as the properties of the final products, depend on the structure of the suspensions. The
structure is affected by such features as the fiber properties, interactions, and flow fields.
Understanding the relationships among these features, the suspension structure, and the macro-
scopic properties can therefore aid in the design and optimization of processes and products. In
this article, we employ a fiber-level simulation method to probe the relationships between fiber
properties, interactions, and the suspension structure.

Many applications require a homogeneous suspensions of fiber to yield uniform products. Long
flexible fibers, however, tend to aggregate, forming spatially heterogeneous structures. The for-
mation of such heterogeneous distributions of mass is commonly referred to as “flocculation,”
and the fibrous aggregates are referred to as “flocs” (Mason, 1950; Kerekes et al., 1985; Soszynski
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and Kerekes, 1988a,b; Kerekes and Schell, 1992). Such structures are undesirable in papermaking,
leading to poor paper quality (Mason, 1950; Robertson, 1956; Kerekes and Schell, 1992).

While aggregation in colloidal dispersions typically arises from attractive interparticle forces
(Russel et al., 1989), Mason (1948, 1950) suggested that non-Brownian fibers can aggregate by a
mechanical mechanism. Fibers in shear flow translate and rotate, resulting in collisions between
fibers. Above a critical concentration (nL® =1, where n is the fiber number density and L is the
fiber length), the frequent forced collisions between fibers can lead to flocculation via mechanical
entanglement. Meyer and Wahren (1964) and Soszynski and Kerekes (1988a,b) expanded on this
notion, proposing a more detailed picture of the flocculation process. Flexible fibers in a flow with
non-zero velocity gradients will be exposed to viscous and dynamic forces (Meyer and Wahren,
1964), as well as interfiber contact forces (Soszynski and Kerekes, 1988a,b), which elastically
deform the fibers. When the flow ceases, the fibers attempt to relax, but if the concentration is
sufficiently large, the fibers will contact other fibers and come to rest in elastically strained con-
figurations. The result is a mechanically coherent fiber network or floc. Soszynski and Kerekes
(1988a) provided evidence for this mechanism by conducting experiments with suspensions of
nylon fibers. Suspensions subjected to flow in a rotating, half-filled cylinder formed coherent fiber
flocs above a critical concentration. These flocs possessed sufficient mechanical strength to be
manually extracted from the cylinder. Some of these flocs were heated above the glass transition
temperature of nylon to relax the stored elastic stresses within the fibers, and then cooled to room
temperature. The heat-treated flocs dispersed easily under gentle stirring, while the never-heated
flocs only dispersed under intense stirring. The authors called this mechanism of flocculation
“interlocking by the elastic bending of fibers.”” While other forces, such as colloidal forces and
interfacial tension arising from entrained gas bubbles, can certainly contribute to fiber aggrega-
tion in some systems, it appears that the elastic-interlocking mechanism can contribute to floc-
culation in any sufficiently concentrated suspension of flexible fibers.

Meyer and Wahren (1964) modelled concentrated suspensions of flexible fibers as elastically
interlocked networks, where each fiber is in contact with at least three others. The predicted
dependence of the shear modulus on fiber aspect ratio r, = L/d (d is the fiber diameter), volume
fraction @, and fiber Young’s modulus Ey agreed reasonably well with experimental data on pulp
suspensions (Thalén and Wahren, 1964; Almin et al., 1967). Bennington et al. (1990) applied a
similar network theory to describe their experimental data on the yield stress of suspensions of
synthetic and wood fibers. The predicted dependence of the yield stress on fiber aspect ratio and
volume fraction agreed fairly well with experimental results. However, the predicted dependence
on the fiber elastic modulus did not agree well with experiments, particularly for the wood fibers.
The authors attributed the lack of agreement to more complex surface interactions than that
accounted for in the model. It is also possible that, contrary to the assumption in the network
theory, the structure of the network may depend on the fiber modulus, and thus the predicted
simple dependence of the network properties on fiber modulus may not hold. Indeed, the floc-
culation behavior of suspensions and thus their microstructure depends on numerous variables,
including the suspending fluid viscosity (Zhao and Kerekes, 1993), the deformation rate (Takeuchi
et al., 1983; Hourani, 1988), the fiber length (Soszynski and Kerekes, 1988a,b; Kerekes and Schell,
1995), the concentration (Kerekes and Schell, 1992), and the type and amount of additives
(Zauscher et al., 2000; Beghello, 1998). We will show in this article that the structure predicted by
simulations also depends on the fiber modulus.
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Particle-level simulations are common methods for probing particulate suspensions, and more
specifically, for understanding the relationships between particle properties and interactions, the
suspension structure, and macroscopic behavior (see, for example, Bossis and Brady, 1987). The
equations of motion for each particle are solved numerically, subject to the forces and torques
identified, in order to evolve the particle positions and orientations in time, and thus produce a
prediction of the suspension microstructure. This method is sufficiently general to allow the
inclusion of a variety of features, such as elongated and flexible particles, as well as various forces,
such as hydrodynamic forces and interactions, colloidal forces and friction, to name a few. The
complexity of the physical model is only limited by the computational resources required to
evaluate the forces and torques and solve the equations of motion.

Numerous fiber suspension studies have focused on rigid, elongated bodies in Newtonian fluids.
Claeys and Brady (1993a,b) modelled fibers as rigid prolate spheroids (ellipsoids of revolution).
They developed a method for accurately evaluating the hydrodynamic forces and torques,
including both short-range hydrodynamic interactions (lubrication forces) as well as long-range,
many-body hydrodynamic interactions. Mackaplow and Shaqgfeh (1996) employed slender-body
theory to accurately evaluate the long-range hydrodynamic interactions between prolate spher-
oids or cylinders. As with the method of Claeys and Brady, the calculations were so computa-
tionally demanding that results for suspensions of long fibers in simple shear flow were limited to
prescribed suspension structures. Thus these methods were not employed to predict the suspen-
sion structure resulting from flow. Simulations by Yamane et al. (1994) and Fan et al. (1998)
employed approximations for the hydrodynamic interactions between rigid fibers. These authors
did not report fiber flocculation under the conditions simulated (nL* <50, r, <30).

Sundararajakumar and Koch (1997) and Harlen et al. (1999) simulated suspensions of rigid,
slender rods interacting via contact forces. They argued that for flowing suspensions of fibers,
lubrication forces cannot prevent fibers from contacting, and thus short-range hydrodynamic
interactions were neglected. Harlen et al. (1999) simulated single spheres falling through neutrally
buoyant fiber suspensions to illustrate the importance of fiber—fiber contacts on the flow prop-
erties of fiber suspensions. For low concentrations, interfiber contacts are rare and the flow
behavior is dominated by long-range hydrodynamic interactions. However, as the concentration
is increased such that the fibers are in frequent contact, the flow behavior is strongly influenced by
the contacts. In fact, for nL* > 12 (r, = 20), the drag on the settling sphere calculated by including
long-range hydrodynamic interactions and contact forces is indistinguishable from that calculated
by including contact forces alone (and in good agreement with experimental results reported by
Milliken et al., 1989). Although the falling sphere influences the suspension structure, the authors
did not report any tendency toward fiber flocculation.

Several studies have focused on simulating suspensions of flexible fibers. Yamamoto and
Matsuoka (1993, 1994) modelled flexible fibers as chains of rigid spheres connected through
springs, with potentials to mimic resistance to bending and twisting. Chain connectivity is
maintained by constraints, producing equations that must be solved simultaneously with the
equations of motion. Ross and Klingenberg (1997) modelled flexible fibers as inextensible chains
of rigid prolate spheroids connected through ball and socket joints. This model eliminates the
need for iterative constraints to maintain fiber connectivity, and can represent large aspect ratio
fibers with relatively few bodies. These features help to reduce computations, facilitating simu-
lation of concentrated suspensions. Schmid et al. (2000) extended this method, modelling flexible
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fibers as chains of spherocylinders connected by ball and socket joints, that interacted via short-
range repulsive forces as well as friction forces. While attractive forces can certainly give rise to
fiber aggregation (Schmid and Klingenberg, 2000a), Schmid et al. (2000) demonstrated that in-
terfiber friction—in the absence of attractive forces—can produce fiber flocculation.

In this article, we expand upon the study of Schmid et al. (2000) to probe flocculation in flexible
fiber suspensions caused by friction forces. The fiber model and simulation method are briefly
described in Section 2. In Section 3.1, we summarize the results obtained by Schmid et al.,
illustrating the importance of friction, fiber stiffness, and fiber shape on flocculation. Results from
the present study are described in the subsequent sections, where the effects of friction, fiber
stiffness and shape on flocculation are investigated further, and the influence of other fiber fea-
tures are explored. In Section 3.2, we show that the coefficient of friction necessary to hold model
flocs intact decreases with increasing fiber stiffness, and that friction-induced flocculation can
occur for values of friction coefficients and fiber stiffnesses similar to those measured experi-
mentally. We also illustrate how friction-induced flocculation is consistent with several experi-
mental observations. The effects of fiber shape are probed in Section 3.3. The concentration at
which U-shaped fibers flocculate decreases with increasing fiber curvature. We show that sliding
friction (Section 3.4) and weak attractive forces (Section 3.5) have little impact on friction-induced
flocculation. In Section 3.6, we show that, in some cases, anisotropic fiber bending can inhibit
flocculation. Conclusions from this work are summarized in Section 4.

2. Simulation method

Flexible fiber suspensions are modelled as neutrally buoyant chains of linked rigid bodies
immersed in a Newtonian liquid. The model includes realistic features such as fiber flexibility,
irregular equilibrium shapes, and mechanical contact forces between fibers. The model and
simulation method are similar to those employed by Schmid et al. (2000) and are described in
more detail elsewhere (Switzer, 2002).

Each fiber in the suspension is represented by N, rigid cylinders (length 2/, radius b) with
hemi-spherical end caps, connected end-to-end by ball and socket joints (Fig. 1). The motion of

contact ik

Fig. 1. Schematic diagram of a model fiber composed of rigid spherocylinders linked by ball and socket joints. Here,
segment i is in contact with segment k& from another fiber.
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the fiber segments is described by Newton’s laws of motion in which we neglect fiber inertia. The
force balance on a fiber segment i includes contributions from hydrodynamic drag (F?yd),
mechanical contact forces (F;"), and forces at each joint that maintain the segment connectivity

X3,

thd +Xz+1 —X + ZFcon — 0’ (1)

where Nc, is the number of contacts on fiber segment i. The torque balance on fiber segment i
includes similar contributions with the addition of a restoring torque at each joint (Y,),

TP+ Yo = Yo+ 0p, % [Xip + X + Z iw x F"] =0, (2)

where T?yd is the hydrodynamic torque, p; is the orientation vector of the segment, and Gy is a
vector from the center of segment i to the point of contact with segment k.

In this model, hydrodynamic interactions are neglected based on simulations performed by
Sundararajakumar and Koch (1997) and Harlen et al. (1999), as previously explained. This
assumption allows us to evaluate the hydrodynamic drag force and torque as that on an isolated
body, F¥ = A, - [U® — 1)) and TM = C; - [Q* — @] + H, : E®, where the resistance tensors A,

C,, and H; for the spherocylinder segments are approximated by the resistance tensors of a prolate
spheroid with an equivalent aspect ratio r. = 0.7r, /Ny, (Schmid et al., 2000; Switzer, 2002). The
ambient velocity U?°, angular velocity £°°, and rate of strain tensor E* are evaluated at the center
of mass of each segment, and only simple shear flows are simulated (i.e., U* = (jz,0,0), where 7y is
the shear rate). The segment translational and angular velocities are ¥; and o, respectively.

The restoring torque Y; describes the resistance of the elastic fibers to bending and twisting. The
bending and twisting components of this torque are assumed to be linear in the difference between
the bending and twisting angles (0; and ¢, respectively) and their equilibrium values (67" and ¢;?),

Y| = rp(0; — 07%) + x(¢; — #7%), (3)

where kp and x; are the bending and twisting constants of the fiber. The bending constant is
related to the stiffness of the fiber material by k, = EyI/2¢, where Ey is the Young’s modulus, and
I = b*/4 is the area moment. The twisting constant is set to x; = 0.67ky in this study, equal to
that of a linearly elastic circular cylinder with a Poisson’s ratio of 0.5. The fiber ﬂexibility is
characterized by a single parameter which we call the effective stiffness, ST = EyI/n,yL*, where 1,
is the suspending fluid viscosity, 7 is the shear rate, and L is the total fiber length.

Fibers of circular cross-section are assumed to have no preferential bending direction (isotropic
bending). However, many fibers, such as refined wood fibers, have a ribbon-like appearance and
tend to bend easier in one direction. This may be modelled by defining two orthogonal bending
directions with (k)4 = Eylhara/2¢ and (Kb)easy = Eyleasy/20 < (Kb)p,q- as illustrated in Fig. 2.
For such anisotropic bending situations, the twisting constant remains fixed at r; = 0.67(Kp )y, -
When Evlia.q — oo, the joint may be modelled as a hinge, resulting in an additional constraint
that restricts bending at a joint to that about a preferred axis (e.g., the y axis in Fig. 2),
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Fig. 2. Schematic illustration of an anisotropic fiber with a preferred bending axis y. In simulations with anisotropic
fibers reported here, the fiber cross-section remains circular.

Vi iy =cost, (4)
where y, is the preferred bending axis, defined with respect to segment i, and 6 is a constant

(0" = =/2 for all simulations with anisotropic bending reported here).
The fiber segments remain connected by applying a constraint for each joint,

r+Ap =1 — Py, (5)

where r; is the position of the center of segment i. These constraint equations allow for the
solution of the constraint forces X; at each joint. Since the segments are rigid and remain con-
nected, the fibers are inextensible (but still flexible).
Fibers experience mechanical contacts with other fibers in the suspension. Two fiber segments i
and k are considered to be in contact if the separation between their surfaces, 4, is less than 0.335.
The force that results from each contact is decomposed into two components—a force in the
normal direction of the contact (ng) and a frictional force (Ff,r(‘c) in the plane of the contact. The
purely repulsive normal force exerted on segment i by segment k£ is modelled as FECI =
—F exp[—ah;|ny, where ny is the unit normal vector directed from segment i to k, F = 900mn,¢by
is the force magnitude, and a = 20/b. The friction force is determined by the constraint of no
relative motion in the plane of contact,
All,'k . elloc
Auy - e | =0, (6)
Fi -y

where Auy is the relative velocity between segments i and & at the point of contact, and the plane

of contact is defined by the vectors el°° and e*°. The calculated friction force is then subjected to a
Coulombic friction law of the form

|FiF¢| < 15| FY| = contact remains intact

Au,
N ik
ik |Allik| ’ ( )

> 'ustat|F5:| = Flf/iic — 'ukin|F
where 1% and p*" are the static and kinetic coefficients of friction.

The equations of motion and the constraint equations for all of the fiber segments in the
suspension can be expressed as a system of differential algebraic equations (DAEs) for the un-
known coordinates and constraint forces,
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q- F(q> ;{) =0,
¥(q) =0, (8)
E(‘l? q, /1) =0,

where q is a vector containing the generalized coordinates of each fiber segment (positions and
orientations), and / is a vector containing all the constraint forces (X and F™) in the suspension.
If the segment orientations are represented by Euler parameters (Wittenburg, 1977), there are
TNsivNsee €quations of motion to be solved. The inextensibility constraint (Eq. (5)) represented by
the vector ¥, is made up of 3Ny, (Nye — 1) constraint equations that depend on only the positions
and orientations. The 3N¢ friction constraint equations (Eq. (6)) are contained in E, where Nc is
the total number of contacts in the system.

Simulations are performed by randomly placing fibers at their equilibrium shape into a cubic
simulation cell of size (CL)3, where ( is the cell size scaling factor (1.5 <{<4). A linear shear field
is imposed and periodic boundary conditions are applied with the Lees—Edwards modification for
shearing systems (Allen and Tilldesley, 1991), to simulate an infinite suspension. The fiber motions
are obtained by the numerical solution of the system of DAEs in Eq. (8). An approximate solution
method was developed to solve this system, the details of which are described elsewhere (Schmid
et al., 2000; Switzer, 2002).

3. Results and discussion
3.1. Illustration of flocculation via friction

Suspensions of flexible fibers in simple shear flow were simulated for a variety of values of the
parameters introduced in the previous section. Consider first the behavior of fibers that bend
isotropically with Ny, = 5, aspect ratio r, = 75, concentration nL3 = 20, and that interact only via
short-range repulsive forces and static friction (1" = 0 throughout this article, unless specifically
stated otherwise). This model is similar to that studied by Schmid et al. (2000). As reported
therein, this system can flocculate for certain ranges of values of the remaining parameters (fiber
shape, stiffness, and coeflicient of static friction), even though attractive forces between fibers are
absent, as illustrated in Fig. 3.

In Fig. 3(a), the coefficient of friction is large (u** = 20), the fibers are relatively stiff
(ST = 0.05), and the equilibrium shape is not straight (0°¢ = 0.8, ¢4 = 0.7). The resulting sus-
pension structure is heterogeneous, with two fiber flocs apparent in the simulation box. For each
of Fig. 3(b)—(d), one of the above features is removed, and as a result, the suspension structure
remains homogeneous in simple shear flow. In Fig. 3(b), the equilibrium shape is straight
(6°7 = ¢°1 = 0); in Fig. 3(c), friction is absent (x*“* = 0); and in Fig. 3(d), the fibers are more
flexible (ST = 0.0005). Thus the parameter values employed in Fig. 3(a) are sufficient to achieve
flocculation in sheared suspensions. The effects of these parameters, as well as others, on the
suspension structure are probed in more detail below. We note that the conditions necessary to
observe flocculation are insensitive to the box size and the initial configuration of fibers (Schmid
et al., 2000; Schmid and Klingenberg, 2000b).
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Fig. 3. Simulation snapshots after shearing to a strain of y = 1500, with parameters nL* = 20, r,, = 75, Nyg = 5, and (a)
Wt =20, § = 0.05, 6° = 0.8, ¢*! = 0.7 (flocculated suspension); (b) same as (a) except 0° = ¢* = 0; (c) same as (a)
except ;' = 0; and (d) same as (a) except ST = 0.0005.

The suspension structure can be characterized quantitatively by the pair distribution function
of the fiber centers-of-mass, g(r), and the average number of contacts per fiber, (n.). The pair
distribution functions are plotted as a function of separation in Fig. 4(a) for the systems depicted
in Fig. 3. Here, the pair distribution functions are averaged over all angular positions. For the
homogeneous suspensions, there is an equal probability of finding fiber pair centers-of-mass with
any separation. The flocculated suspension, however, has a high probability of finding fiber
centers at small separations.

The pair distribution function can be used to identify systems that flocculate. For suspensions
that flocculate by varying the value of one parameter (e.g., i, nL?, or the fiber shape), the
transition from a homogeneous to a heterogeneous suspension is dramatic and occurs over a fairly
narrow range of parameter values (Schmid et al., 2000). For homogeneous suspensions, g(r)
resembles curves (b), (c) or (d) in Fig. 4(a). As a parameter is varied such that snapshots of the
suspension become visibly heterogeneous, g(r) always attains a shape similar to that depicted by
curve (a) of Fig. 4(a), with g(r = 0.01L) > 3. We thus find it convenient to define a system as
flocculated if g(r = 0.01L) > 3. This definition allows us to easily monitor the degree of hetero-
geneity quantitatively during simulations. Other measures of the microstructure could certainly be
employed (e.g., the integral of g(r), or the structure factor), but we have found that the definition
g(r=0.01L) > 3 has not failed to distinguish a heterogenous structure from a homogeneous one
(as determined from visual inspection of snapshots).

The average number of contacts per fiber is plotted as a function of shear strain y in Fig. 4(b)
for each of the systems in Fig. 3. For the non-flocculated systems, (n.) rapidly achieves a constant,
steady-state value. For the flocculated system, (n.) increases to a constant steady-state value
greater than those for the non-flocculated system, over a strain of several hundred. Monitoring
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Fig. 4. (a) Pair distribution function, and (b) average number of contacts per fiber versus strain for the runs depicted in
Fig. 3.

(nc(y)) during a simulation run is an effective way of determining when steady state is achieved.
The steady-state value of (n.) also describes the extent to which a fiber network is formed. Meyer
and Wahren (1964) defined a fiber network as a system of fibers in which each fiber is held in
position by contact with at least three other fibers. This is consistent with the flocculated system
illustrated in Fig. 3(a), where (n.) ~ 3 at steady state.

3.2. Effects of friction and fiber stiffness

Fibers in contact interact via friction forces characterized by a static coefficient of friction, u''.
For 1 = 0, the suspension structure remains homogeneous regardless of the other parameter
values. As illustrated in Fig. 3, for certain ranges of parameter values, suspensions will tend to
flocculate for sufficiently large values of p**'. For such systems, as p** is increased from zero
above 15 which depends on the other parameter values, suspensions begin to show increased
heterogeneity. For the parameter values (Ng,rp,nL?, S, 0%, ¢™) = (5,75,20,0.05,0.8,0.7),

sl ~ 5. As p™ is increased further, the degree of heterogeneity increases; however, for
W = 2 the structure as characterized by g(r = 0.01L) or (n.(y — oo)) no longer changes

appreciably. The value of ¢! is also a function of the other parameter values; for the values listed

max
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above, 18 ~ 10. For most simulated flexible fiber suspensions that we have observed to floc-

max

culate, 10 < g5 < 100 (Switzer, 2002).

Similar behavior is observed as the fiber flexibility is varied. All suspensions will remain
homogenous for sufficiently small effective stiffness (ST = EyI/nyyL* < 1). As illustrated in Fig.
3, some suspensions will flocculate when the effective stiffness is increased above a certain value
(which depends on the other parameter values).

The requirement of both a sufficiently large effective fiber stiffness and a sufficiently large
coefficient of friction in order to produce heterogeneous structures is consistent with the elastic-
interlocking mechanism of flocculation proposed by Kerekes et al. (1985) (also called Type-C
cohesion). They proposed that the cohesive forces that hold fibers within flocs are caused by
interfiber friction. The strength of the friction force is proportional to the normal force between
contacting fibers, and this normal force is a function of the fiber stiffness. Soszynski and Kerekes
confirmed this mechanism experimentally; nylon fiber flocs readily dispersed when the fiber
stiffness was reduced by heating above the glass transition temperature of nylon. Schmid et al.
(2000) reported similar behavior using a model and simulation method similar to those employed
here. Flocs formed in simple shear become trapped in elastically strained configurations upon
cessation of shear. When the flocs are extracted from the simulation box and placed in an un-
bounded shear flow, the floc slowly disperses. If the effective fiber stiffness or the coefficient of
friction is reduced, the fibers disperse much more rapidly (Schmid et al., 2000; Switzer, 2002).

Although the simulation results presented thus far appear to agree with experimental obser-
vations, unreasonably large values of ' are necessary to see flocculation for the conditions
described above (1 > 1). The value of p**' measured experimentally for contacting cellulose
surfaces and cellulose fibers is approximately 0.5 (Amelina et al., 1998; Shchukin et al., 1998;
Zauscher and Klingenberg, 2001). However, we also find that the effective stiffness values em-
ployed thus far are small compared to those typically achieved in experiments. Choosing
dimensional parameter values typical for wood fibers sheared in water (Ey/ ~ 10~'> Nm? (Tam
Doo and Kerekes, 1981), L ~ 2.3 mm, d =~ 30 pm, 5, = 0.001 Pas, y ~ 10), the dimensionless
stiffness is S ~ 4. This is much larger than the values used in the simulations with equivalent
aspect ratios (r, = 75). Simulating suspensions of fibers this stiff requires a very small time step
(At < 107%) and thus significantly more computational power than is currently available to
simulate to shear strains y > 1000.

To probe the behavior of flocculating suspensions composed of much stiffer fibers, we inves-
tigated the behavior of a test floc made up of five inherently straight fibers interwoven into a
“star”” configuration (illustrated in the inset of Fig. 5; Ny, = 7, 1, = 56, 0° = 0, ¢* = 0) similar to
the test structure proposed by Farnood et al. (1994). The test floc was placed in a simple shear
field and sheared to a strain y = 100 (in the plane of shear). For a fixed value of S, the test floc
would remain intact if p***" were large enough, and the test floc would disperse if @' were too
small. The minimum value of 1*** necessary keep the floc intact was defined as a “critical” friction
coefficient, 2, which is a function S°. The critical friction coefficient is plotted as a function of
St for the star in Fig. 5. As the stiffness increases, the coefficient of friction necessary to hold the
floc together decreases. These results suggest that for large values of S, comparable to those
typically encountered experimentally (ST > 1), the coefficient of friction necessary to see floc-
culation in simulations of sheared suspensions may indeed approach the coefficient of friction
values measured experimentally.
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Fig. 5. Critical coefficient of friction as a function of the effective stiffness for the star test floc in simple shear flow,
(Nseg, 7, 0°%, %) = (7, 56,0,0).

Varying the dimensionless stiffness S can be achieved by varying the intrinsic fiber stiffness
(EyI), the fiber length (L), the suspending fluid viscosity (#,), or the shear rate (y). Soszynski and
Kerekes (1988a,b) showed the importance of the effective fiber stiffness in producing flocs in a
recirculating flow of nylon fiber suspensions. As 7, was increased (effective stiffness decreased) the
concentration at which flocs first formed (threshold concentration, (nL?), ) increased. Above a
certain value of #,, flocs would no longer form. This phenomenon was investigated with the
simulation method presented here, by shearing suspensions with a fixed effective stiffness to
y = 1500 and varying concentrations in order to determine the threshold concentration. The re-
sults are shown in Fig. 6 where (nL?),,, is plotted as a function of 1/S*T 7, for the parameter
values (Ngeg, 7y, 07, ¢%%, p¥) = (5,75,0.6,0,20). The threshold concentration increases as 1/S°"
increases, with no flocs observed for 1/5 > 500, qualitatively consistent with the experimental
observations reported by Soszynski and Kerekes. Soszynski and Kerekes (1988a) explain the
dependence of flocculation tendency on #, in terms of a competition between the different forces
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]/Seff

Fig. 6. Threshold concentration to produce flocs as a function of the inverse of the effective stiffness, 1/S°" oc #,;
(Nscg, 7p, 0%, 9%, ') = (5,75,0.6,0,20).
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that determine fiber motion. In low 7, suspending fluids, fiber motion is dominated by fiber
interactions (as well as acceleration and deceleration in unsteady flows), and the fibers do not
closely follow the suspending fluid motion. In sufficiently concentrated suspensions, this non-affine
motion can result in local “crowding,” which leads to entanglement and floc formation. The fiber
motion in large #, fluids is dominated by hydrodynamic forces, resulting in affine motion and
perhaps a higher degree of fiber alignment (in shear flows). Crowding is thus inhibited, resulting in
no floc formation. This explanation is consistent with the model and simulation results presented
here. The relevant dimensionless quantity, the effective stiffness S = Ey//n,yL*, characterizes the
relative importance of viscous and elastic forces, the latter of which is intimately related to fiber
interactions. Furthermore, as illustrated in Fig. 3(a) and (b), decreasing ST sufficiently (i.e.,
increasing 7,) clearly results in more aligned structures in addition to a more homogeneous system.

Kerekes (1995) postulated that fluid inertia plays an important role in the formation of flocs in
fiber suspensions. Since our model neglects both fluid and fiber inertia, we cannot comment on the
role of inertia in flocculation. We can only state that this model predicts that flocs can be pro-
duced in shear flow at small Reynolds numbers under appropriate conditions (i.e., inertia is not
necessary).

3.3. Effects of fiber shape

The equilibrium shape of a fiber significantly impacts the suspension microstructure. The
dependence of fiber equilibrium shape on flocculation behavior has been investigated by per-
forming simulations with suspensions of U-shaped fibers. The shape may be characterized by the
common equilibrium angle 0° (¢° = 0) at each joint, or equivalently by the fiber radius of
curvature, defined here for linked rigid bodies as

I ¢ ;
k=3 <sm(aeq 72) " tan(6%/2) ) ®)

where ¢ is the segment half-length. The first term in parentheses is the radius of a circle passing
through the ball and socket joints, and the second term is the radius of a circle tangent to the
centers of the fiber segments. The radius Ry is the average of these two radii.

Suspensions with specific radii of curvature and various concentrations were simulated in
simple shear flow to y=1500, with all other parameters fixed ((Nseg,p, ST, ©5%) =
(5,75,0.05,20)). The results are summarized in Fig. 7(a) where the homogeneity of the suspen-
sions is mapped as a function of curvature and concentration. Suspensions that remained
homogeneous are represented by open circles, while suspensions that flocculated are represented
by filled circles. Suspensions flocculate at lower concentrations as the dimensionless fiber curva-
ture (b/Ry) is increased. As the fibers become nearly straight (b/Ry — 0), the suspensions only
flocculate at high concentrations, and perfectly straight fibers have never been observed to pro-
duce heterogeneous structures in the simulations. However, it is possible that flocs formed at
sufficiently large concentration may exceed the simulation box size, or that there is a transition to
the formation of space-filling, elastically interlocked networks (Schmid et al., 2000).

The variation in suspension structure with fiber shape can also be characterized by the aver-
age number of contacts per fiber at steady state (n.), as illustrated in Fig. 7(b). Here, (n.) is
plotted as a function of b/Ry for Ng, =3 and 5, with the remaining parameter values
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((Nsegs 7, ST, 159 = (5,75, 0.05, 20)); (b) average number of contacts per fiber at steady state ((n.),,) as a function of
b/Ry for suspensions at nL*> = 20 after shearing for 7 = 1500 ((Nseg, 7p, ST, ) = (5, 75,0.05, 20)).

(nL3, S ry, w4 = (20,0.05,75,20). As b/Ry increases (the fibers become more curved), (n.)
increases. This is likely caused by the decreased rotation period of higher curvature fibers resulting
in more interfiber collisions. The values of (n)  increase slowly with increasing b/Ry at first.
When the curvature becomes large enough to cause flocculation, (n.) increases rapidly.

The fiber shape also depends on the number of segments, and thus so do the details of the
suspension structure, as illustrated in Fig. 7(b). Flocculation for suspensions of three-segment
fibers is shifted to slightly larger curvatures compared to suspensions with five-segment fibers.
Suspensions of fibers with Ny, > 5 show approximately the same behavior at an aspect ratio of
r, = 75, under these conditions. One would expect the influence of the number of segments on the
suspension structure to be a function of the fiber aspect ratio and flexibility.

3.4. Effects of kinetic friction

All of the results presented thus far employ only the static friction constraint (uX" = 0 in Eq.
(7)); if the force required to keep contacting segments i and £ from sliding exceeds u“a‘|FlI.Z|, the
segments are allowed to slide unimpeded (except for hydrodynamic drag). To investigate the
influence of kinetic friction on suspension structure, shear flow was simulated for the parameter
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Fig. 8. Pair distribution function for the fiber centers-of-mass of suspensions in simple shear flow at steady state
7 > 1000, for various values of the coefficients of static and kinetic friction (Nsg, 7y, nL?, ST, 05, ¢*%) = (5,75, 20,
0.05,0.6,0).

values (Nseg, 7, L3, ST, 6% %) = (5,75,20,0.05,0.6,0), and various values of ;% and p*i". The
steady-state pair distribution functions for some of these simulations are plotted in Fig. 8, and the
results are summarized below.

In the absence of kinetic friction (¢ = 0), flocculation only occurs for p#* > p% ~ 10. Such
behavior is illustrated in Fig. 8, where the pair distribution function for a simulation with
@'t =20 and pki" = 0 exhibits a flocculated structure (g(r = 0.01L) ~ 9). Adding sliding friction
does not substantially influence the structure, as illustrated by the similar pair distribution
function for p = 20 and g = 20.

Consider next the “incipient” situation where p**' = 1, which is less than that required to
observe flocculation (uX™ = 0). The addition of kinetic friction with pX" = @ = 1 is not sufficient
to cause the suspension to flocculate. This is illustrated in Fig. 8 where the pair distribution
function for this case reflects a homogeneous structure. Similar behavior is observed for all
simulations with p*" < gt < '3t We thus conclude that kinetic friction does not significantly
influence flocculation behavior. In other words, kinetic friction cannot significantly reduce the
coeflicient of static friction necessary to induce flocculation.

Not only is kinetic friction unable to induce flocculation in nearly flocculated systems, but
the addition of kinetic friction can actually inhibit flocculation when pfi" >> g2t > (8%t This
is illustrated in Fig. 8 in which the pair distribution function for p** = 20 and p*™ = 200 char-
acterizes a structure less heterogenous than that obtained for p#* = 20 and p*" = 0.

While kinetic friction can affect the suspension structure, it apparently does not significantly
influence flocculation behavior. Thus in the remainder of this article, only results from simulations
with ¢ = 0 are reported.

kin

3.5. Effect of weak attractive forces

All of the simulations discussed thus far have been performed in the absence of attractive forces
between fibers. However, experiments have shown that weak attractive forces can exist between
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fibers in suspension. Shchukin et al. (1998) reported attractive force magnitudes of |F*| ~ 0.04
uN for cellulose fibers in water, and Chaouche and Koch (2001) reported attractive force mag-
nitudes in the range [F*"| ~ 0.01-6 puN for nylon fibers in various fluids. While attractive forces
may themselves cause aggregation, they may also serve to lower the coefficient of friction nec-
essary to see friction-induced flocculation. To model attractive forces in the simulations, we added
a weak attractive term to the normal force between fibers F} = —6mi bj[F exp(—ah)—
AN exp(—aAhz)]nik, where Ay i1s the dimensionless magnitude of the attractive force and a, is
related to the decay length of the attractive force. The parameter values were selected so that
the maximum attractive force is \Fﬁax\ ~ 0.02 uN (for F = 150, a = 20, Ay = 9, and a, = 35, and
the suspension parameters 7, = 1 Pas, L = 2/Ny, = 2.5 mm, b =16 um, and y = 10 s7"). The
structures of suspensions in simple shear flow with purely repulsive interactions (4y = 0) and with
weak attractive forces (Ay = 9) are compared in Fig. 9 where the steady-state pair distribution
functions are presented for various values of ;**' and the remaining parameters values fixed at
(Nsegs 7, nL3, ST 6% %4, pikin) = (5,75, 20,0.05,0.8,0.7,0). With x5t = 5, suspensions with and
without attractive forces flocculate. The fibers with weak attractive forces have a slightly higher
probability of having small separations between the fiber centers-of-mass than fibers with purely
repulsive interactions (g(r = 0.01L) ~ 8 and g(r = 0.01L) = 6 for Ay =9 and An = 0, respec-
tively). However, for p =1 < ' ~ 5, the pair distribution functions reflect a homogeneous
structure for both 4y = 0 and Ay = 9. Thus weak attractive forces do not significantly alter the
minimum coefficient of friction necessary to induce flocculation.

Schmid (1999) demonstrated the effect of using larger attractive forces between fibers
(|FY . | ~ 10 uN) in the absence of friction (u™ = yki" = 0). Although larger attractive forces did
lead to flocculation in the absence of friction, the behavior of the systems was markedly different
than that exhibited by systems that flocculate by friction. The fibers did not elastically interlock,
as observed experimentally (Soszynski and Kerekes, 1988a,b). In particular, increasing the

effective stiffness lead to a less coherent structure. Thus attractive forces alone cannot explain the
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Fig. 9. Pair distribution function for the fiber centers-of-mass of suspensions in simple shear flow at steady state
y > 1000, with and without attractive potentials (Mg, 7, 2L3, ST, 0%, ¢*9) = (5, 75,20, 0.05,0.8,0.7).
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observation reported by Soszynski and Kerekes (1988a) that reducing elastic stresses leads to less
coherent structures.

Chaouche and Koch (2001) observed flocculation in suspensions of nearly straight nylon fibers
in viscous fluids with smaller aspect ratios (r, ~ 36) sheared at very low shear rates (y < 1). They
hypothesized that flocculation was due to attractive forces between fibers because the fibers were
sufficiently stiff to be considered rigid rods, suggesting that they could not deform and elastically
interlock (ST >> 1). Simulations of perfectly rigid, straight fibers both with (4x = 9) and without
weak attractive forces at conditions similar to those employed by Chaouche and Koch (r, = 35
and nL? ~ 17-52) were performed, along with similar simulations of suspensions of straight
and curved flexible fibers of the same aspect ratio, with and without attractive forces
(Nsegs 7, nL3, ST 0% %4, 1oty = (5,75,17-52,0.7,0-0.1,0, 20)). In Fig. 10, the pair distribution
functions are presented for the various simulations with nL*> = 52.4. In each case (as well as at
smaller concentrations), the structures remain homogeneous. Thus the addition of attractive
forces does not cause the suspensions to flocculate, in the sense of producing heterogeneous
structures. However, the simulations with flexible fibers could not be performed at the large values
of the effective stiffness reported by Chaouche and Koch (S a 2000); it is possible that the
simulations could produce flocs at larger values of S if such simulations could be performed.

Although the simulations described above did not produce heterogenecous structures, the
addition of attractive forces does influence the suspension behavior in other ways. In Fig. 11, the
specific viscosity is plotted as a function of concentration for the simulations described above,
with and without attractive forces. (The specific viscosity is defined 5y, = (n — ny) /1y, where 5 is
the shear viscosity of the suspension. The methods used to calculate the rheological properties of
flexible fiber suspensions are described elsewhere (Switzer and Klingenberg, 2003).) The addition
of attractive forces causes a significant increase in the specific viscosity, consistent with the
observations of Chaouche and Koch. The influence of attractive forces on the specific viscosity is
more significant for flexible fibers than for straight, rigid fibers. The specific viscosity of the curved
fiber suspensions is not altered significantly, but remains larger than the viscosity of straight fiber
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Rigid, straight (A =9)
Flex., straight (A = 0)
Flex., straight (A =9)
Flex., U-shaped (A =9)
—— Curve (a), Fig. 4(a)
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Fig. 10. Pair distribution functions for simulations of various fiber suspensions with r,, = 35, p#* = 20, and nL* = 52.4.
Rigid fibers: N, = 1; flexible, straight fibers: Ny, = 5, ST = 0.7; U-shaped fibers: Ny, = 5, ST = 0.7, 6/ = 0.1. Also
shown is the pair distribution function for a flocculated suspension (curve (a) in Fig. 4(a)).
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Fig. 11. Specific viscosity as a function of fiber concentration for various suspensions with r, = 35 and p** = 20, with
and without attractive forces. Rigid fibers: N, = I; flexible, straight fibers: Ny, =5, S = 0.7; U-shaped fibers:
Nyg =5, 8 = 0.7, 6 = 0.1.

suspensions. The increase in viscosity of the straight fiber suspensions appears to be caused by a
change in the suspension microstructure—not the formation of heterogeneous structures, but
rather a change in the orientation distribution. In Fig. 12, the average of the xz component of the
orientation tensor (pp) (p is the orientation vector of the major axis of a segment) is plotted as a
function of concentration for the simulations described above. The addition of attractive forces
causes segments of straight fibers to spend more time oriented away from the direction of flow
(p. #0), giving rise to an increased specific viscosity. The orientation of the curved fiber sus-
pensions is not altered significantly by attractive forces, and the viscosity remains essentially
unchanged. Thus while attractive forces do not cause flocculation in these systems—in the sense of
producing heterogeneous structures—they do alter the structure and rheology of the straight fiber
suspensions in manner consistent with the observations of Chaouche and Koch.

0.12

—6— Rigid, straight (A = 0)
0.10 1| —@— Rigid, straight (A =9)
—8— Flex,, straight (A = 0)
0.08 {| —m— Flex., straight (Ay=9)
—A— Flex., U-shaped (A =0)
A 0.06 1| —&— Flex., U-shaped (A =9)

Q.N
>
¥ 004
0.02 1
0.00 Q;:\E—Eg
0.02 . . : : .
0 0 20 30 40 50 60
3
nL

Fig. 12. xz component of the orientation tensor (pp) as a function of fiber concentration for various suspensions with
rp =35 and g =20, with and without attractive forces. Rigid fibers: Ny, = 1; flexible, straight fibers: Ny, = 5,
S = 0.7; U-shaped fibers: Ny = 5, S = 0.7, 0° = 0.1.
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3.6. Effect of anisotropic bending

We investigated the effect of changing the bending stiffness in the joints such that the fibers have
a preferential bending direction (anisotropic bending). The fiber joints were changed from ball
and socket joints to pin joints, which constrain the motion of adjacent fiber segments to a
plane. This makes the effective stiffness infinite for a restoring torque parallel to the plane
((8°),.,g — ©0), while allowing the effective stiffness for bending perpendicular to the plane
(($°) cay) to remain finite.

The pair distribution functions for the fiber centers-of-mass for suspensions of isotropic fibers
(ST = 0.05) at '™ =20 and for suspensions of anisotropic fibers with pin joints ((A)
(Seff)easy = 0.05, @t = 20; (B) (Seff)easy = 0.05, 1/ — oo; and (C) (ST, = 0.01, g = 20), in
which all other variables are held constant ((Nyg, 7, nL*, 6%, ¢, 10y = (5,75, 20,0.6,0,0)), are
plotted in Fig. 13. The anisotropically bending fibers (A), result in a relatively homogeneous
suspension at steady state, in contrast to the isotropic fibers that flocculate strongly at the same
conditions. Increasing the coefficient of friction for the anisotropic fibers to infinity (B) results in a
flocculated suspension, although it is less heterogeneous than the equivalent suspension of iso-
tropic fibers with ' = 20. Decreasing the effective stiffness in the bending direction also results
in a homogeneous distribution of fibers (C). If the pin joints are replaced by anisotropic ball and
socket joints with (8°"), ;= 5(8"),,, = 0.25 or (8, = 2(5°"),,,, = 0.1 with all other con-
ditions the same as those given above, the suspension no longer flocculates.

At present, we are unable to explain the behavior observed for simulations of anisotropically
bending fibers. One possible explanation for this change in flocculation behavior may be that the
number of configurations the anisotropic fibers can assume is too limited to allow the fibers to
entangle and interlock. However, wood fibers have ribbon-like structures which give them prefer-
ential bending directions, and wood fibers will flocculate. While the model does take into account
preferential bending, the real fiber geometry is not considered. These “flattened” wood fibers can
contact one another at much larger areas than our model fibers (circular cross-section), which may
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Fig. 13. Pair distribution function for the centers-of-mass of fibers with isotropic (S¢F = 0.05, u¥* = 20) and aniso-
tropic bending ((A) ($°"),,,, = 0.05, #* = 20; (B) (8°),,,, = 0.05, ™" — o0; and (C) ($*),,,, = 0.01, ** = 20) using
pin joints after shearing for y = 1500 with (Ngg, 7, nL*, 69, %, yi%) = (5,75, 20,0.6,0,0).
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result in enhanced frictional interactions or even bonding. Indeed, the model has shown that
anisotropic fibers will flocculate by substantially increasing ps*'. Also, real fibers have a distribution
of lengths, stiffnesses, cross-sectional areas, and shapes that we have not considered in the results
reported here.

4. Conclusions

We have employed a model for flexible fibers and a particle-level simulation technique to
investigate the relationships between fiber properties, interactions, and the structure of non-
Brownian, flexible fiber suspensions in simple shear flow. The fiber model includes such realistic
features as non-straight equilibrium shapes, flexibility, and frictional contacts. Each fiber is
composed of a series of linked rigid spherocylinders connected by ball and socket joints.

The main conclusions from this study are as follows:

e The simulations show that suspensions of flexible fibers interacting via frictional contacts can
flocculate, even in the absence of attractive interfiber forces. The flocculation process observed
is consistent with the elastic-interlocking mechanism proposed by Soszynski and Kerekes
(1988a). The tendency toward flocculation depends on several parameters. A suspension of fi-
bers that are too flexible, or whose coefficient of static friction is too small will not flocculate,
regardless of the values of the remaining parameters. The minimum coefficient of friction nec-
essary to observe flocculation appears to decrease as the fiber stiffness increases.

e The dependence of the homogeneity of the suspension structure on the dimensionless fiber stiff-
ness (effective stiffness, S = Ev1/n,7L*) agrees qualitatively with numerous experimental obser-
vations.

o Fiber shape also influences the suspension structure, as the concentration at which fibers begin
to flocculate decreases with increasing fiber curvature (for U-shaped fibers).

o Other parameters have a weaker influence on the suspension structure. Kinetic (sliding) friction
and weak attractive forces have little effect on the structural behavior of fiber suspensions (for
the ranges of parameter values investigated). Anisotropic bending tends to shift the onset of
flocculation to larger values of the coefficient of static friction.

The most important practical implications of the results are threefold. First, we have provided
support to the previous conjecture that flocculation can indeed arise from friction alone, in the
absence of attractive forces between fibers. This, and the ability to reproduce other experimental
observations (e.g., effects of fiber stiffness) help to establish the validity of fiber-level simulations.
Second, this simulation method can be employed to explore effects of properties and conditions
that are very difficult to investigate in a systematic way experimentally. For example, it is very
challenging to systematically explore the influence of fiber shape on suspension structure exper-
imentally, but this is quite straightforward in simulations. Finally, because experiments can be
very time-consuming and costly, simulations can be used to guide experiments, thus significantly
reducing their number and the associated cost. This requires, of course, that the ability of sim-
ulations to produce qualitatively or quantitatively correct results is established. While achieving
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quantitative prediction capabilities with simulations is a reasonable goal, even qualitative pre-
diction capabilities can be extremely useful for reducing experimental efforts (Nilsen et al., 1998).

The main limitation of this approach is the computational demand. The maximum allowable
time step (for obtaining stable, accurate solutions to the DAEs) decreases with increasing fiber
stiffness, which limits simulations with many fibers to relatively small stiffnesses, well below that
expected in many practical situations of interest. Improving the computation speed will not only
allow us to investigate more realistic fiber stiffnesses, but also to investigate a greater range of
parameter space.
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